Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lasers Med Sci ; 39(1): 5, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091111

RESUMEN

Blue light-mediated photobiomodulation (PBM) is a promising approach to promote osteogenesis. However, the underlying mechanisms of PBM in osteogenesis are poorly understood. In this study, a human osteosarcoma cell line (i.e., Saos-2 cells) was subjected to intermittent blue light exposure (2500 µM/m2/s, 70 mW/cm2, 4.2 J/cm2, once every 48 h) and the effects on Saos-2 cell viability, metabolic activity, differentiation, and mineralization were investigated. In addition, this study addressed a possible role of blue light induced cellular oxidative stress as a mechanism for enhanced osteoblast differentiation and mineralization. Results showed that Saos-2 cell viability and metabolic activity were maintained upon blue light exposure compared to unilluminated controls, indicating no negative effects. To the contrary, blue light exposure significantly increased (p < 0.05) alkaline phosphatase activity and Saos-2 cell mediated mineralization. High-performance liquid chromatography (HPLC) assay was used for measurement of reactive oxygen species (ROS) activity and showed a significant increase (p < 0.05) in superoxide (O2•-) and hydrogen peroxide (H2O2) formed after blue light exposure. Together, these results suggest that the beneficial effects of blue light-mediated PBM on osteogenesis may be induced by controlled release of ROS.


Asunto(s)
Terapia por Luz de Baja Intensidad , Osteogénesis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Terapia por Luz de Baja Intensidad/métodos , Peróxido de Hidrógeno/farmacología , Proliferación Celular , Diferenciación Celular
2.
J Funct Biomater ; 14(5)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37233366

RESUMEN

Astrocytes, highly specialized glial cells, play a critical role in neuronal function. Variations in brain extracellular matrix (ECM) during development and disease can significantly alter astrocyte cell function. Age-related changes in ECM properties have been linked to neurodegenerative diseases such as Alzheimer's disease. The goal of this study was to develop hydrogel-based biomimetic ECM models with varying stiffness and evaluate the effects of ECM composition and stiffness on astrocyte cell response. Xeno-free ECM models were synthesized by combining varying ratios of human collagen and thiolated hyaluronic acid (HA) crosslinked with polyethylene glycol diacrylate. Results showed that modulating ECM composition yielded hydrogels with varying stiffnesses that match the stiffness of the native brain ECM. Collagen-rich hydrogels swell more and exhibit greater stability. Higher metabolic activity and greater cell spreading was observed in hydrogels with lower HA. Soft hydrogels trigger astrocyte activation indicated by greater cell spreading, high GFAP expression and low ALDH1L1 expression. This work presents a baseline ECM model to investigate the synergistic effects of ECM composition and stiffness on astrocytes, which could be further developed to identify key ECM biomarkers and formulate new therapies to alleviate the impact of ECM changes on the onset and progression of neurodegenerative diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...